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Abstract— In this paper, we introduce a new public image 

dataset for Devanagari script: Devanagari Handwritten 

Character Dataset (DHCD). Our dataset consists of 92 thousand 

images of 46 different classes of characters of Devanagari script 

segmented from handwritten documents. We also explore the 

challenges in recognition of Devanagari characters. Along with 

the dataset, we also propose a deep learning architecture for 

recognition of those characters. Deep Convolutional Neural 

Network (CNN) have shown superior results to traditional 

shallow networks in many recognition tasks. Keeping distance 

with the regular approach of character recognition by Deep 

CNN, we focus the use of Dropout and dataset increment 

approach to improve test accuracy. By implementing these 

techniques in Deep CNN, we were able to increase test accuracy 

by nearly 1 percent. The proposed architecture scored highest 

test accuracy of 98.47% on our dataset. 
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Image processing; Computer Vision; Deep learning; Deep 
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I. INTRODUCTION  

Character classification is an important part in many 

computer vision problems like Optical character recognition, 

license Plate recognition, etc. Development of a recognition 

system is an emerging need for digitizing handwritten Nepali 

documents that use Devanagari characters.  Optical Character 

Recognition systems are least explored for Devanagari 

characters. [1][2] present a few approaches for segmentation 

and recognition of Devanagari characters. Our task is 

challenging because we not only have to deal with 

classification but also preparation of dataset. So in this paper, 

we introduce a new publicly available dataset, Devanagari 

Handwritten Character Dataset (DHCD), of 92 thousand 

images of 46 Devanagari characters. Then, we also propose 

Deep learning architecture to classify the characters in DHCD. 

Introduction of multilayer perceptron network has been a 

milestone in many classification tasks in computer vision[3]. 

But, performance of such a network has always been greatly 

dependent on the selection of good representing features[4][5]. 

Deep Neural Networks on the other hand do not require any 

feature to be explicitly defined, instead they work on the raw 

pixel data generating the best features and using them to 

classify the inputs into different classes[6]. 

 Deep Neural networks consist of multiple nonlinear 

hidden layers and so the number of connections and trainable 

parameters are very large. Besides being very hard to train, 

such networks also require a very large set of examples to 

prevent overfitting. One class of Deep Neural Network with 

comparatively smaller set of parameters and easier to train is 

Convolutional Neural Network (CNN)[7].The ability of CNN 

to correctly model the input dataset can be varied by changing 

the number of hidden layers and the trainable parameters in 

each layer and they also make correct assumption on the 

nature of images[8]. Like a standard feed forward network, 

they can model complex non-linear relationship between input 

and output. But CNN have fewer trainable parameters than a 

fully connected feed-forward network of same depth. CNNs 

introduce the concept of local receptive field, weight 

replication and temporal subsampling[9] which provide some 

degree of shift and distortion invariance. CNNs for image 

processing generally are formed of many convolution and sub-

sampling layers between input and output layer. These layers 

are followed by fully connected layers thereby generating 

distinctive representation of the input data. Beside image 

recognition, CNNs have also been used for speech 

recognition[10][11]. 

 Although deep convolutional neural networks have a 

small and inexpensive architecture compared to standard feed 

forward network of same depth, training a CNN still requires a 

lot of computation and a large labeled dataset. Training such a 

network was not so effective and did not produce any superior 

result to traditional shallow network, until recently. With the 

character dataset, Street View House Numbers dataset), 

Devanagari Handwritten Character Dataset is available for download at 
http://www.cvresearchnepal.com/dhcd 
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development of state of the art GPU and introduction of 

unsupervised pre-training phase,  CNNs have at present 

proven to surpass traditional feed forward network in a 

number of classification tasks. In CNNs, initializing the 

weight randomly and applying gradient descent and back 

propagation to update the weights seem to generate poorer 

solution for a deep network[12].   So, generally, greedy layer 

wise unsupervised pre-training is applied prior to supervised 

training. Why such unsupervised training helps is investigated 

in [13].    

II. SYSTEM OVERVIEW 

The complete flow diagram of dataset preparation 

and character classification is presented in Fig. 1. Dataset 

preparation phase can be divided into three subsystems; 

character extraction, preprocessing and separation of Training 

and Testing set. Character extraction deals with scanning 

handwritten documents, cropping individual characters and 

labeling them. Preprocessing subsystem deals with pre-

processing on the character images and the last subsystem 

randomly splits the dataset into training and test set. Detailed 

description on preprocessing and dataset preparation is 

presented under the subheading “DHCD Preparation”. 

Character classification phase includes training and testing on 

dataset. CNN-trainer is run on the Training set and the 

accuracy of the trained model is tested using Testing set of 

DHCD.  

III. DEVANAGARI HANDWRITTEN CHARACTER 

DATASET 

A. Script 

Devanagari is part of the Brahmic family of scripts of 

Nepal, India, Tibet, and South-East Asia[14]. The script is 

used to write Nepali, Hindi, Marathi and similar other 

languages of South and East Asia. The Nepalese writing 

system adopted from Devanagari script consists of 12 vowels, 

36 base forms of consonant, 10 numeral characters and some 

special characters. Consonant characters are shown in table 1, 

vowel characters in table 2 and Numeral characters in table 3.  

Table 1.  Base form of Consonant Characters 

क  ख ग   घ ङ च छ ज झ ञ ट ठ 

ड ढ ण त थ द ध न प फ ब भ 

म य र ल व स ष श ह क्ष त्र ज्ञ 

 

Table 2. Vowel Characters 

अ आ इ ई उ ऊ ए ऐ ओ औ अं अः 

 

Table 3. Numeral Characters 

० १ २ ३ ४ ५ ६ ७ ८ ९ 

 

 Moreover, all 36 consonants could be wrapped with 

the vowels generating 12 other derived forms for each branch 

of consonant character. One such example for प is shown in 

table 4. 

Table 4. Derived forms of Consonant प when wrapped with vowels 

प पा पप पी पु पू पे पै पो पौ पं पः 

 

Also there are some additional special characters in the script. 

Among all these characters, Devanagari Handwritten 

Character Dataset is for base form of 36 consonant and 10 

numeral characters. It consists of total of 92 thousand images, 

2 thousand images for each character.  

B. DHCD Preparation 

The 92 thousand images of DHCD were generated by 

imaging the characters written by many individuals resulting 

wide variation in the way each character is written. We 

scanned hundreds of handwritten documents of different 

writers and cropped each character manually. Each image in 

the dataset is unique. The Dataset is randomly split into 

Training (85 %) and Testing set(15 %). Training set consists 

of 78,200 images and the Testing set consists of remaining 

13,800 images. Each image is 32x32 pixels and the actual 

character is centered within 28x28 pixels. Padding of 0 valued 

2 pixels was done on all four sides to make this increment in 

image size. The cropped images were preprocessed before 

padding. Initially, the images were applied gray-scale 

conversion. After this the intensity of the pixels were inverted 

making the character white on dark background. To make 

background uniform for all the images, we suppressed the 

background to 0 value pixel. 

C. Challenges in DHCD 

There are many pairs of characters in Devanagari script, 

contained in DHCD that has similar structure differentiating 

each with structures like dots, horizontal line etc. Some of the 

examples are illustrated in table 5. 

 



 

Table 5. Structural formation of characters 

छ ६ Difference being horizontal line at top. 

ड ङ Difference being presence of single dot on 

right side 

द ढ Difference being presence of small circle and 

small down stroke line 

 

The problem becomes more intense due to the way people 

write the characters. Similar scenario was seen when we 

collected the data for DHCD. Two such examples are shown 

in table 6. 

 

Table 6. Different characters written similarly 

 

प 
  

य 

 

घ 
 

ध 

 

IV. CHARACTER RECOGNITION 

A. Convolutional Neural Network 

A simple Convolutional Neural Network similar to the one 

used in our recognition system is shown in Fig 2. The input  

 

 

 

layer consists of the raw pixel values from the 32X32 

grayscale image and has no trainable parameters. The first 

convolution layer(C1) has 4 feature maps with 784 

units/neurons each(28 x 28). Each feature map is shown in 

figure as 2D planes and they have different set of weights. All 

the units in a feature map share the same set of weights and so 

they are activated by the same features at different locations. 

This weight sharing not only provides invariance to local shift 

in feature position but also reduces the true number of 

trainable parameters at each layer. Each unit in a layer 

receives its input from a small neighborhood at same position 

of previous layer.  So the number of trainable weights 

associated with each unit in a convolutional layer depends on 

the chosen size of the neighborhood of previous layer mapped 

to that unit. Since all the units are activated only from the 

input taken from a local neighborhood they detect local 

features such as corners, edges, end-points. This concept of 

local receptive field is inspired from study of the, locally 

sensitive orientation selective, neurons in the cats visual 

system by Hubel and Wiesel. 

 For a 5x5 kernel as shown in Fig. 2. the number of input 

weights for each unit is 25. In addition the units also have a 

trainable bias. The total number of units in a layer depends 

upon the size of kernel in the previous layer and overlap 

between the kernels.  

The convolutional layer is followed by a 

subsampling/pooling(S1) layer. Sub sampling layer reduces 

the resolution of the feature map from convolution layer by 

averaging the features in the neighborhood or pooling for a 

maximum value. Because the exact position of features vary 

for different images of the same character, it is more desirable 
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Fig. 1. General Flow Diagram of Dataset preparation and Character classification 



that the system does not learn the absolute position of feature 

but instead learn the relative position among the features. The 

pooling layer helps achieve this goal and makes the classifier 

more immune to shift and distortion. It aggregates the 

information within a set of small local regions and produces a 

pooled feature map as output. The number of units in a 

pooling layer thus depends upon the local region of the 

previous convolution layer feeding input to the units in 

pooling layer. So for a non overlapping scheme and a 2X2 

region from previous layer connected to units in pooling layer 

the dimension of feature maps reduce to half of the 

convolution layer. The max pooling method checks for the 

maximum value on its local receptive field, multiplies it by a 

trainable coefficient, adds a trainable bias and generates 

output. 

The second convolution layer(C2) follows this 

subsampling layer. Each feature map in C2 layer is generated 

by taking input from S1. The units in C2 get their input from 

the 5x5 neighborhood at identical position of some layers in 

S1 and not all. The reason for not connecting C2 feature maps 

to all feature maps of S1 layer is to reduce the total number of 

trainable parameters and, this also introduces randomness in 

providing input to different feature maps with the assumption 

that this will help them to learn complementary features with 

one another. The output of this convolution layer is 

subsampled, convolved and forwarded to fully connected 

layer. From this point we obtain a 1D feature vector.  The 

fully connected layers model the input by applying non-

linearity like in a traditional feed-forward network. The type 

of non-linearity used is Rectified Linear Unit (ReLU) non 

linearity given as f(x) =max(0, x). The reason for using it 

instead of the widely popular non-linear functions like f(x) = 

tanh(x) and f(x) = (1 + e−x)-1 is because training with gradient-

descent is comparatively much faster for ReLU than the other 

non-linearities[15].  

 The depth of the network and the size of different layers to 

be used depends greatly on the dataset and the problem 

domain. Furthermore, the number of feature maps in a layer, 

the size of the kernel on each layer and the choice of non-

overlapping or overlapping kernel and the extent of overlap 

also produces different results. So, in our case we tested 

different architectures by varying these parameters and 

presented results of the architecture producing the highest 

accuracy on the test data set.  The result of the tests are 

summarized on the Experimental setting and results section. 

B. Overfitting in Deep Network 

The large and deep architecture of Deep CNN with large 

bank of trainable parameters make it susceptible to overfitting. 

While training deep networks, it is very difficult to find 

optimal hyper parameters of the functions that share the 

parameters. These networks being large require large amount 

of training data. The available dataset in DHCD may not be 

sufficient to train a network of this size. Given below are some 

approaches we used to prevent our model from overfitting.  

1)  Dataset Increment 

During training, the number of images we trained on is 

much larger than the original number in DHCD Training set. 

Each image in training set was cropped using window of size 

30x30 from the four corners and at the center generating five 

unique images. The position of actual character being at the 

center of the image in training set ensures it is contained in all 

five images but at different position. This technique not only 

increases the dataset for training but also trains the model to 

account for possible shift in position of character within the 

image. This increased dataset will be referred to as Extended 

set in coming section. 

2)  Dropout 

Dropout simply refers to “dropping out units”; units 

representing both hidden and visible in the deep network. We 

temporarily remove the random units from the network along 

with all its inlet and outlet connections.  For each training 

iteration, there will be new lighter network that remains after 

dropping the random units from the common denser 

architecture which will be sampled and trained. Each unit is 

retained with the fixed probability of p independent of other 

units and we set 0.5 for p, the number being optimal choice for 

most of the cases. [16] 

 
Fig. 2. Convolutional Neural Network 

 

 



 

V. EXPERIMENTAL SETTINGS AND RESULT 

We tested the dataset with different architectures by 

varying depth, width and number of parameters of network. 

The results of two of those experiments are presented in the 

coming sections. The first model is very wide and deep and 

consists of a large number of parameters. It will be referred to 

as “model A” in the coming section. It consists of three 

convolution layers and one fully connected layer. The 

sequence of the layers in model A is shown in Fig 3., where C 

is a convolution layer, R is a Rectified Linear Unit Layer, N is 

Normalization layer implementing Local Response 

Normalization, P is pooling layer implementing max pooling, 

D is the Dropout layer, FC is the Fully Connected Layer, A is 

accuracy layer for test set and SL is the Softmax Loss layer 

that computes multinomial logistic loss of the softmax of its 

input. The second model is derived from the lenet family. It 

has a shallower architecture and consists of fewer number of 

parameters than model A .It will be referred to as “model B” 

in the coming section. It consists of two convolutional layers 

followed by two fully connected layers. The sequences of 

layers in model B is shown in Fig 4. where each notation 

holds similar meaning as discussed for model A.  

In all cases, Convolution is implemented with 

overlapping Filter(Kernel) of Size 5*5 and stride 1 on both 

direction. Pooling is implemented with a non-overlapping 

Filter of size 2*2 and stride 2 on both directions. Local 

response Normalization is achieved by dividing each input 

value by the following expression 

(1+ ( α /n)∑ixi
2)β    (1) 



, where n is the size of each local region, and the sum is taken 

over the region centered at that value. The value of α-

parameter used is 0.001 and β-parameter is 0.75. 

Our deep neural network was trained on the DHCD 

as a multi-class classification problem. For both the models, 

the standard back-propagation on feed-forward net is 

implemented by stochastic gradient descent (SGD) with 

momentum of 0.9. The mini-batch size is 200 and the network 

was trained for 50 epochs. The base learning rate was 

initialized for all trainable parameters at 0.005 for Model A 

and 0.001 for Model B. The learning rate was updated by an 

inverse function using the following relation 

 LearningRate = BLR × (1 + γ × iterations)-power  (2) 

, where BLR is the Base Learning Rate and iterations is the 

number of iterations completed. The value of γ was set to 

0.0001 and power was set to 0.75.  

The result of training for 50 epoch is presented in 

Fig. 5. Test Accuracy remained nearly constant after 50 

epochs. For Model A, Extended Dataset showed superior 

result in Test Accuracy. So, increasing number of training 

sample is effective to increase performance of wide and deep 

network with large bank of parameters. The highest testing 

accuracy obtained for Model A is 0.98471. For model B, 

addition of dropout showed better improvement in Test 

accuracy. However, extending dataset also resulted in slight 

improvement in Test accuracy. The highest value of Testing 

Accuracy obtained for this model is 0.982681. 

VI. FUTURE WORKS 

Devanagari Handwritten Character Dataset is 

confined only to the 36 consonant characters in their base 

form and 10 numeral characters. However, it is essential in the 

future to extend the dataset to include all the vowel characters, 

derived form of consonant characters and special characters as 

well. The dataset could also be promoted to serve as a new 

benchmark for evaluation of handwritten character 

classification. The proposed classification system could be 

implemented to design a complete handwritten document 

digitizing system.    

 

VII. SUMMARY AND CONCLUSION 

We presented a new dataset Devanagari Handwritten 

Character Dataset which is publicly available for any 

researcher. It consists 92 thousand images of 46 different 

characters of Devanagari script. We explored the challenges in 

classification of characters in Devanagari Dataset. The 

challenges result due to the fact that the dataset consists of 

many characters that are visually similar or written in a similar 

way by most people. Also, In Devanagari script, the base form 

of consonant characters can be combined with vowels to form 

additional characters which is not explored in this research. 

 
Fig. 3. Architecture of model A 

 

Fig. 2. Architecture of model A 



 
Fig. 5. Test Accuracy 

 

For recognition, we proposed two deep learning models to 

train the dataset. We also analyzed the effect of dropout layer 

and dataset increment to prevent overfitting of these networks. 

The experimental results suggested that Deep CNNs with 

added Dropout layer and Dataset increment technique can 

result in very high test accuracy even for a diverse and 

challenging dataset like ours. 
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