
Deep Learning Based Large Scale Handwritten

Devanagari Character Recognition

Shailesh Acharya

Institute Of Engineering

Tribhuvan University

Kathmandu, Nepal

sailes437@gmail.com

Ashok Kumar Pant

Institute Of Science and Technology

Tribhuvan University

Kathmandu, Nepal

ashokpant87@gmail.com

Prashnna Kumar Gyawali

Institute Of Engineering

Tribhuvan University

Kathmandu, Nepal

gyawali.prasanna@gmail.com

Abstract— In this paper, we introduce a new public image

dataset for Devanagari script: Devanagari Handwritten

Character Dataset (DHCD). Our dataset consists of 92 thousand

images of 46 different classes of characters of Devanagari script

segmented from handwritten documents. We also explore the

challenges in recognition of Devanagari characters. Along with

the dataset, we also propose a deep learning architecture for

recognition of those characters. Deep Convolutional Neural

Network (CNN) have shown superior results to traditional

shallow networks in many recognition tasks. Keeping distance

with the regular approach of character recognition by Deep

CNN, we focus the use of Dropout and dataset increment

approach to improve test accuracy. By implementing these

techniques in Deep CNN, we were able to increase test accuracy

by nearly 1 percent. The proposed architecture scored highest

test accuracy of 98.47% on our dataset.

Keywords— Devanagari Handwritten Character Dataset;

Image processing; Computer Vision; Deep learning; Deep

Convolutional Neural Network; Optical Character Recognition;

Dropout

I. INTRODUCTION

Character classification is an important part in many

computer vision problems like Optical character recognition,

license Plate recognition, etc. Development of a recognition

system is an emerging need for digitizing handwritten Nepali

documents that use Devanagari characters. Optical Character

Recognition systems are least explored for Devanagari

characters. [1][2] present a few approaches for segmentation

and recognition of Devanagari characters. Our task is

challenging because we not only have to deal with

classification but also preparation of dataset. So in this paper,

we introduce a new publicly available dataset, Devanagari

Handwritten Character Dataset (DHCD), of 92 thousand

images of 46 Devanagari characters. Then, we also propose

Deep learning architecture to classify the characters in DHCD.

Introduction of multilayer perceptron network has been a

milestone in many classification tasks in computer vision[3].

But, performance of such a network has always been greatly

dependent on the selection of good representing features[4][5].

Deep Neural Networks on the other hand do not require any

feature to be explicitly defined, instead they work on the raw

pixel data generating the best features and using them to

classify the inputs into different classes[6].

 Deep Neural networks consist of multiple nonlinear

hidden layers and so the number of connections and trainable

parameters are very large. Besides being very hard to train,

such networks also require a very large set of examples to

prevent overfitting. One class of Deep Neural Network with

comparatively smaller set of parameters and easier to train is

Convolutional Neural Network (CNN)[7].The ability of CNN

to correctly model the input dataset can be varied by changing

the number of hidden layers and the trainable parameters in

each layer and they also make correct assumption on the

nature of images[8]. Like a standard feed forward network,

they can model complex non-linear relationship between input

and output. But CNN have fewer trainable parameters than a

fully connected feed-forward network of same depth. CNNs

introduce the concept of local receptive field, weight

replication and temporal subsampling[9] which provide some

degree of shift and distortion invariance. CNNs for image

processing generally are formed of many convolution and sub-

sampling layers between input and output layer. These layers

are followed by fully connected layers thereby generating

distinctive representation of the input data. Beside image

recognition, CNNs have also been used for speech

recognition[10][11].

 Although deep convolutional neural networks have a

small and inexpensive architecture compared to standard feed

forward network of same depth, training a CNN still requires a

lot of computation and a large labeled dataset. Training such a

network was not so effective and did not produce any superior

result to traditional shallow network, until recently. With the

character dataset, Street View House Numbers dataset),

Devanagari Handwritten Character Dataset is available for download at
http://www.cvresearchnepal.com/dhcd

978-1-4673-6744-8/15/$31.00 ©2015 IEEE

development of state of the art GPU and introduction of

unsupervised pre-training phase, CNNs have at present

proven to surpass traditional feed forward network in a

number of classification tasks. In CNNs, initializing the

weight randomly and applying gradient descent and back

propagation to update the weights seem to generate poorer

solution for a deep network[12]. So, generally, greedy layer

wise unsupervised pre-training is applied prior to supervised

training. Why such unsupervised training helps is investigated

in [13].

II. SYSTEM OVERVIEW

The complete flow diagram of dataset preparation

and character classification is presented in Fig. 1. Dataset

preparation phase can be divided into three subsystems;

character extraction, preprocessing and separation of Training

and Testing set. Character extraction deals with scanning

handwritten documents, cropping individual characters and

labeling them. Preprocessing subsystem deals with pre-

processing on the character images and the last subsystem

randomly splits the dataset into training and test set. Detailed

description on preprocessing and dataset preparation is

presented under the subheading “DHCD Preparation”.

Character classification phase includes training and testing on

dataset. CNN-trainer is run on the Training set and the

accuracy of the trained model is tested using Testing set of

DHCD.

III. DEVANAGARI HANDWRITTEN CHARACTER

DATASET

A. Script

Devanagari is part of the Brahmic family of scripts of

Nepal, India, Tibet, and South-East Asia[14]. The script is

used to write Nepali, Hindi, Marathi and similar other

languages of South and East Asia. The Nepalese writing

system adopted from Devanagari script consists of 12 vowels,

36 base forms of consonant, 10 numeral characters and some

special characters. Consonant characters are shown in table 1,

vowel characters in table 2 and Numeral characters in table 3.

Table 1. Base form of Consonant Characters

क ख ग घ ङ च छ ज झ ञ ट ठ

ड ढ ण त थ द ध न प फ ब भ

म य र ल व स ष श ह क्ष त्र ज्ञ

Table 2. Vowel Characters

अ आ इ ई उ ऊ ए ऐ ओ औ अं अः

Table 3. Numeral Characters

० १ २ ३ ४ ५ ६ ७ ८ ९

 Moreover, all 36 consonants could be wrapped with

the vowels generating 12 other derived forms for each branch

of consonant character. One such example for प is shown in

table 4.

Table 4. Derived forms of Consonant प when wrapped with vowels

प पा पप पी पु पू पे पै पो पौ पं पः

Also there are some additional special characters in the script.

Among all these characters, Devanagari Handwritten

Character Dataset is for base form of 36 consonant and 10

numeral characters. It consists of total of 92 thousand images,

2 thousand images for each character.

B. DHCD Preparation

The 92 thousand images of DHCD were generated by

imaging the characters written by many individuals resulting

wide variation in the way each character is written. We

scanned hundreds of handwritten documents of different

writers and cropped each character manually. Each image in

the dataset is unique. The Dataset is randomly split into

Training (85 %) and Testing set(15 %). Training set consists

of 78,200 images and the Testing set consists of remaining

13,800 images. Each image is 32x32 pixels and the actual

character is centered within 28x28 pixels. Padding of 0 valued

2 pixels was done on all four sides to make this increment in

image size. The cropped images were preprocessed before

padding. Initially, the images were applied gray-scale

conversion. After this the intensity of the pixels were inverted

making the character white on dark background. To make

background uniform for all the images, we suppressed the

background to 0 value pixel.

C. Challenges in DHCD

There are many pairs of characters in Devanagari script,

contained in DHCD that has similar structure differentiating

each with structures like dots, horizontal line etc. Some of the

examples are illustrated in table 5.

Table 5. Structural formation of characters

छ ६ Difference being horizontal line at top.

ड ङ Difference being presence of single dot on

right side

द ढ Difference being presence of small circle and

small down stroke line

The problem becomes more intense due to the way people

write the characters. Similar scenario was seen when we

collected the data for DHCD. Two such examples are shown

in table 6.

Table 6. Different characters written similarly

प

य

घ

ध

IV. CHARACTER RECOGNITION

A. Convolutional Neural Network

A simple Convolutional Neural Network similar to the one

used in our recognition system is shown in Fig 2. The input

layer consists of the raw pixel values from the 32X32

grayscale image and has no trainable parameters. The first

convolution layer(C1) has 4 feature maps with 784

units/neurons each(28 x 28). Each feature map is shown in

figure as 2D planes and they have different set of weights. All

the units in a feature map share the same set of weights and so

they are activated by the same features at different locations.

This weight sharing not only provides invariance to local shift

in feature position but also reduces the true number of

trainable parameters at each layer. Each unit in a layer

receives its input from a small neighborhood at same position

of previous layer. So the number of trainable weights

associated with each unit in a convolutional layer depends on

the chosen size of the neighborhood of previous layer mapped

to that unit. Since all the units are activated only from the

input taken from a local neighborhood they detect local

features such as corners, edges, end-points. This concept of

local receptive field is inspired from study of the, locally

sensitive orientation selective, neurons in the cats visual

system by Hubel and Wiesel.

 For a 5x5 kernel as shown in Fig. 2. the number of input

weights for each unit is 25. In addition the units also have a

trainable bias. The total number of units in a layer depends

upon the size of kernel in the previous layer and overlap

between the kernels.

The convolutional layer is followed by a

subsampling/pooling(S1) layer. Sub sampling layer reduces

the resolution of the feature map from convolution layer by

averaging the features in the neighborhood or pooling for a

maximum value. Because the exact position of features vary

for different images of the same character, it is more desirable

 Scan Handwritten

Documents

 Crop Each character

Manually

 Label each character

Character Extraction

 Resize image to 28 * 28 pixel

 Convert to grayscale form

 Invert pixel intensity

 Suppress Background pixels

 Add padding of 2 pixels on all

sides

Pre-processing

 Randomly split

dataset to training

(85%) and

testing(15%) set

Training and Testing

Set Separation

Training set

Testing set

 Run CNN-Trainer

Trained

Model

CNN-Training

 Run Test on

Testing Set

Testing

Accuracy

Fig. 1. General Flow Diagram of Dataset preparation and Character classification

that the system does not learn the absolute position of feature

but instead learn the relative position among the features. The

pooling layer helps achieve this goal and makes the classifier

more immune to shift and distortion. It aggregates the

information within a set of small local regions and produces a

pooled feature map as output. The number of units in a

pooling layer thus depends upon the local region of the

previous convolution layer feeding input to the units in

pooling layer. So for a non overlapping scheme and a 2X2

region from previous layer connected to units in pooling layer

the dimension of feature maps reduce to half of the

convolution layer. The max pooling method checks for the

maximum value on its local receptive field, multiplies it by a

trainable coefficient, adds a trainable bias and generates

output.

The second convolution layer(C2) follows this

subsampling layer. Each feature map in C2 layer is generated

by taking input from S1. The units in C2 get their input from

the 5x5 neighborhood at identical position of some layers in

S1 and not all. The reason for not connecting C2 feature maps

to all feature maps of S1 layer is to reduce the total number of

trainable parameters and, this also introduces randomness in

providing input to different feature maps with the assumption

that this will help them to learn complementary features with

one another. The output of this convolution layer is

subsampled, convolved and forwarded to fully connected

layer. From this point we obtain a 1D feature vector. The

fully connected layers model the input by applying non-

linearity like in a traditional feed-forward network. The type

of non-linearity used is Rectified Linear Unit (ReLU) non

linearity given as f(x) =max(0, x). The reason for using it

instead of the widely popular non-linear functions like f(x) =

tanh(x) and f(x) = (1 + e−x)-1 is because training with gradient-

descent is comparatively much faster for ReLU than the other

non-linearities[15].

 The depth of the network and the size of different layers to

be used depends greatly on the dataset and the problem

domain. Furthermore, the number of feature maps in a layer,

the size of the kernel on each layer and the choice of non-

overlapping or overlapping kernel and the extent of overlap

also produces different results. So, in our case we tested

different architectures by varying these parameters and

presented results of the architecture producing the highest

accuracy on the test data set. The result of the tests are

summarized on the Experimental setting and results section.

B. Overfitting in Deep Network

The large and deep architecture of Deep CNN with large

bank of trainable parameters make it susceptible to overfitting.

While training deep networks, it is very difficult to find

optimal hyper parameters of the functions that share the

parameters. These networks being large require large amount

of training data. The available dataset in DHCD may not be

sufficient to train a network of this size. Given below are some

approaches we used to prevent our model from overfitting.

1) Dataset Increment

During training, the number of images we trained on is

much larger than the original number in DHCD Training set.

Each image in training set was cropped using window of size

30x30 from the four corners and at the center generating five

unique images. The position of actual character being at the

center of the image in training set ensures it is contained in all

five images but at different position. This technique not only

increases the dataset for training but also trains the model to

account for possible shift in position of character within the

image. This increased dataset will be referred to as Extended

set in coming section.

2) Dropout

Dropout simply refers to “dropping out units”; units

representing both hidden and visible in the deep network. We

temporarily remove the random units from the network along

with all its inlet and outlet connections. For each training

iteration, there will be new lighter network that remains after

dropping the random units from the common denser

architecture which will be sampled and trained. Each unit is

retained with the fixed probability of p independent of other

units and we set 0.5 for p, the number being optimal choice for

most of the cases. [16]

Fig. 2. Convolutional Neural Network

V. EXPERIMENTAL SETTINGS AND RESULT

We tested the dataset with different architectures by

varying depth, width and number of parameters of network.

The results of two of those experiments are presented in the

coming sections. The first model is very wide and deep and

consists of a large number of parameters. It will be referred to

as “model A” in the coming section. It consists of three

convolution layers and one fully connected layer. The

sequence of the layers in model A is shown in Fig 3., where C

is a convolution layer, R is a Rectified Linear Unit Layer, N is

Normalization layer implementing Local Response

Normalization, P is pooling layer implementing max pooling,

D is the Dropout layer, FC is the Fully Connected Layer, A is

accuracy layer for test set and SL is the Softmax Loss layer

that computes multinomial logistic loss of the softmax of its

input. The second model is derived from the lenet family. It

has a shallower architecture and consists of fewer number of

parameters than model A .It will be referred to as “model B”

in the coming section. It consists of two convolutional layers

followed by two fully connected layers. The sequences of

layers in model B is shown in Fig 4. where each notation

holds similar meaning as discussed for model A.

In all cases, Convolution is implemented with

overlapping Filter(Kernel) of Size 5*5 and stride 1 on both

direction. Pooling is implemented with a non-overlapping

Filter of size 2*2 and stride 2 on both directions. Local

response Normalization is achieved by dividing each input

value by the following expression

(1+ (α /n)∑ixi
2)β (1)



, where n is the size of each local region, and the sum is taken

over the region centered at that value. The value of α-

parameter used is 0.001 and β-parameter is 0.75.

Our deep neural network was trained on the DHCD

as a multi-class classification problem. For both the models,

the standard back-propagation on feed-forward net is

implemented by stochastic gradient descent (SGD) with

momentum of 0.9. The mini-batch size is 200 and the network

was trained for 50 epochs. The base learning rate was

initialized for all trainable parameters at 0.005 for Model A

and 0.001 for Model B. The learning rate was updated by an

inverse function using the following relation

 LearningRate = BLR × (1 + γ × iterations)-power (2)

, where BLR is the Base Learning Rate and iterations is the

number of iterations completed. The value of γ was set to

0.0001 and power was set to 0.75.

The result of training for 50 epoch is presented in

Fig. 5. Test Accuracy remained nearly constant after 50

epochs. For Model A, Extended Dataset showed superior

result in Test Accuracy. So, increasing number of training

sample is effective to increase performance of wide and deep

network with large bank of parameters. The highest testing

accuracy obtained for Model A is 0.98471. For model B,

addition of dropout showed better improvement in Test

accuracy. However, extending dataset also resulted in slight

improvement in Test accuracy. The highest value of Testing

Accuracy obtained for this model is 0.982681.

VI. FUTURE WORKS

Devanagari Handwritten Character Dataset is

confined only to the 36 consonant characters in their base

form and 10 numeral characters. However, it is essential in the

future to extend the dataset to include all the vowel characters,

derived form of consonant characters and special characters as

well. The dataset could also be promoted to serve as a new

benchmark for evaluation of handwritten character

classification. The proposed classification system could be

implemented to design a complete handwritten document

digitizing system.

VII. SUMMARY AND CONCLUSION

We presented a new dataset Devanagari Handwritten

Character Dataset which is publicly available for any

researcher. It consists 92 thousand images of 46 different

characters of Devanagari script. We explored the challenges in

classification of characters in Devanagari Dataset. The

challenges result due to the fact that the dataset consists of

many characters that are visually similar or written in a similar

way by most people. Also, In Devanagari script, the base form

of consonant characters can be combined with vowels to form

additional characters which is not explored in this research.

Fig. 3. Architecture of model A

Fig. 2. Architecture of model A

Fig. 5. Test Accuracy

For recognition, we proposed two deep learning models to

train the dataset. We also analyzed the effect of dropout layer

and dataset increment to prevent overfitting of these networks.

The experimental results suggested that Deep CNNs with

added Dropout layer and Dataset increment technique can

result in very high test accuracy even for a diverse and

challenging dataset like ours.

VIII. REFERENCES

[1] A. K. Pant, S. P. Pandey and S. P. Joshi “Off-line Nepali Handwritten
Character Recognition using Multilayer Perceptron and Radial Basis
Function neural networks,” Third Asian Himalayas International
Conference on Internet (AH-ICI), pp 1-5, 2012

[2] V. J. Dongre, V. H. Mankar “A Review of Research on Devnagari
Character Recognition,” International Journal of Computer Applications
Vol. 12, No.2, pp. 0975 – 8887,November 2010

[3] M. G. Quiles, R. Romero, “A Computer Vision System based on Multi-
Layer Perceptrons for Controlling Mobile Robots,” ABCM Symposium
series in Mechatronics- Vol 2 pp. 661-668

[4] D. W. Ruck, S. K. Rogers, M. Kabrisky, “Feature Selection Using a
Multilayer Perceptron,” Journal of Neural Network Computing, Volume
2, pp 40-48, November 1990

[5] J. Yang, K. Shen, C. Ong, X. Li, “Feature Selection for MLP Neural
Network: The use of Random Permutation of Probabilistic Outputs,”
IEEE Transaction on Neural Networks, vol. 20,issue 12, pp. 1911-1922,
October 2009

[6] H. Lee, R. Grosse, R. Ranganath, and A.Y. Ng. “Convolutional deep
belief networks for scalable unsupervised learning of hierarchical
representations,” In Proceedings of the 26th Annual International
Conference on Machine Learning, pp. 609–616. ACM, 2009.

[7] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, “Gradient-Based
Learning Applied to Document Recognition,” Proceeding of the IEEE,
vol. 86, Issue 11, pp. 2278 - 2324 November 1998

[8] A. Krizebsky, I. Sutskever, G. E. Hinton, “ImageNet Classification with
Deep Convolutional Neural Networks,”Advances in Neural Information
Processing Systems 25 (NIPS 2012)

[9] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W.
Hubbard, and L. D. Jackel. “Handwritten digit recognition with a back-
propagation network” , Advances in Neural Information Processing
Systems 2 (NIPS 1989), Denver, CO, 1990

[10] O. Abdel-Hamid, A. Mohamed, H. Jiang and G. Penn, “Applying
Convolutional Neural Networks Concepts To hybrid NN-HMM Model
For Speech Recognition”, IEEE International Conference on Acoustics,
Speech and Signal Processing(ICASSP), pp. 4277-4280, 2012

[11] T.N. Sainath, A.–R. Mohamed, B. Kingsbury and B. Ramabhadran,
“Deep convolutional Neural Networks for LVCSR,” IEEE International
Conference on Acoustics, Speech and Signal Processing(ICASSP), pp.
8614-8618, 2013

[12] H. Larochelle, Y. Bengio, J. Louradour and P. Lamblin “Exploring
Strategies for Training Deep Neural Networks,” The Journal of Machine
Learning Research Vol. 10, pp. 1-40, 2009

[13] D. Erhan, Y. Bengio, A. Courville, P. Manzagol, P. Vincent and S.
Bengio, “Why Does Unsupervised Pre-training Help Deep Learning?”
The Journal of Machine Learning Research, Vol. 11, pp. 625-660, Feb
2010

[14] S. R. Fischer, “A History of Writing,” Reaktion Books, 2004

[15] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” In Proc. 27th International Conference on
Machine Learning, 2010

[16] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov
“Dropout: A simple way to Prevent Neural Networks from Overfitting,”
Journal of Machine Learning Research, vol. 15, pp. 1929-1958, 2014 .

Fig. 4. Architecture of model B

